
Analysis of Behavioral Requirements
 for Component-Based Machine Controllers

Frederick Proctora, John Michaloskia, Sushil Birlab, and George Weinertc

aNational Institute of Standards and Technology, MS 8230, Gaithersburg, MD

b General Motors Corporation, North American Operations, Warren, MI
cLawrence Livermore National Laboratories, P.O Box 808, Livermore, CA

ABSTRACT

Machine controllers built from standardized software components have the greatest potential to reap open architecture
benefits – including plug-and-play, reusability and extensibility. A challenge to component-based controllers relates to
standardizing behavior in a non-restrictive manner to accommodate component packaging and component integration.
Control component packaging requires behavior to be dependable, well-defined, and well-understood among a variety of
users to help ensure the reusability of the component, the reliability of the component, and the correctness of the system built
using the component. Integration of control components requires that the behavior model is consistent not just within a single
component, but across all components in a system so that the components interoperate correctly. At the same time, the
component behavioral model must be reasonably flexible to accommodate all behavioral situations and not be restrictive to a
single programming methodology. Further, not all the behavior in the system may be pre-packaged as part of a component.
Thus, another issue is the suitability of the standard behavior model for programming and integration of new control logic.
Ideally, we need a vendor-neutral, tool-neutral, controller-neutral behavior model to allow the export/import of any and all
types of control logic programs. This paper will analyze the requirements of component-based, machine controller behavior,
then offer a refinement of a Finite State Machine as the basis of a behavior model to satisfy these requirements. Examples
will be presented based on the behavioral model the efforts of the Open, Modular, Architecture Controller (OMAC) User’s
Group Application Programming Interface (API) for standardized, interchangeable machine controller components.

Keywords: Finite State Machine, component, module, control, standard, modularity, machine

1. BACKGROUND

Historically, computing in manufacturing operations has lagged behind mainstream hardware and software technology. The
physical constraints of factory floor operation, including harsh environment, continual operation, and strict safety
requirements, has forced manufacturers to rely on controls vendors and systems integrators to provide control systems based
on special-purpose hardware and software. Unfortunately, such factory automation is costly to support and cannot easily
adapt to meet new manufacturing demands or technology innovations. Manufacturers realize the shortcomings of proprietary
solutions and are moving toward open solutions using commodity, standards-based computer products in machine control.
Machine controllers used in factory automation built with this open, standards-based premise have been termed open
architecture controllers.1,2 The open architecture strategy is part of an effort to improve the agility of manufacturing by
providing the highest level of flexibility for integration of manufacturing control elements as well as for integrating the shop
floor directly into the enterprise business systems. Organizations that can adapt to open architecture practices could
experience potential benefits that include improved time to market, increased production yield, increased production capacity,
reduced inventory, and optimization of production workforce.

Open architecture systems differ widely in the degree to which they are “open” ranging from systems built from commodity
hardware and open-source software to systems consisting primarily of proprietary components with exposed interfaces.
However, in order to maximize benefits, open-architecture systems should be component-based with interfaces and
interaction standardized; otherwise, interoperability and plug-and-play are unfeasible. Component-based technology stresses

 Commercial equipment and materials are identified in order to adequately specify certain procedures. In no case
does such identification imply recommendation or endorsement by the National Institute of Standards and Technology,
nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

This publication was prepared, in part, by a United States Government employee as part of their official duties and is,
therefore, a work of the U.S. Government and not subject to copyright.

Published in Proceedings of SPIE International Symposium on Intelligent Systems and Advanced Manufacturing Vol. 4191,
Boston, MA, November 6-7, 2000

the desire for independent pieces of software that can be reused and combined in different ways to implement complex
software systems. Component-based technology offers to make it easier and more cost-effective to design, develop, integrate,
deploy and reconfigure open-architecture controllers and applications. In this regard, the seminal foundation for the open
controller effort in the discrete-parts manufacturing industry is based on the “Open Modular Architecture Controller”
(OMAC) requirements document.3 This document lead to the formation of the OMAC Users Group, which is an industry
forum to advance the state of modular open architecture controller technology. As part of the OMAC forum, an effort was
undertaken to define an open architecture controller specification based on application programming interfaces (API). This
work was done under the auspices of the OMAC API workgroup, of which the authors are members, and has lead to the
development of the “OMAC API” specification for machine controllers.4

The objective of the OMAC API is to “enable control vendors to supply standard components that machine suppliers
configure into machine control systems. The integrated control system and machine are then delivered to the end-user.” The
OMAC API application domain ranges from multi-axis, coordinated motion control typical of Computer Numerical Control
(CNC) to single axis controllers one would find in the packaging industry or as part of a transfer line. The OMAC API
adopted an object-oriented approach for the specification where interface classes define the API. This approach contrasts to
other industry standards efforts5,6 which are message-based. The OMAC API uses a paradigm in which systems are built
primarily of components, which offers the opportunity to lower costs by sharing the components across a broader market,
thus amortizing them over a larger population, while taking advantage of the investments that industry is putting into the
development of new technologies.

The OMAC API defines a component as a reusable piece of software that serves as a building block within an application. To
be useful, component interfaces must be well-defined so that they are flexible enough to solve a general class of problem, and
at the same time robust. Example components defined in the OMAC API specification include: IO Point, Control Plan,
Kinematics, and Control Law. Interfaces define component functionality. A component may contain multiple interfaces,
through either aggregation or inheritance. New components may extend functionality by means of aggregation or
specialization. A module is also a type of component, but one that acts as a container of components of some other type. A
module provides a means of storing component references and then providing access to the component references. The
OMAC API specification defines a series of modules, including Axis, Axis Group, Task Coordination, and Discrete Logic. A
summary of the OMAC API components and modules with a brief description is given in Table 1.

Table 1. OMAC Module and Component Interfaces

Axis
Modules responsible for servo control of axis motion, transforming incoming motion setpoints into
setpoints for the corresponding actuators.

Axis Group
Modules responsible for coordinating the motions of individual axes, transforming an incoming
motion segment specification into a sequence of equi-time-spaced setpoints for the coordinated axes.

Omac

Serves as the base class that provides a uniform API base class for an OMAC module. The OMAC
base class defines a state model and methods for start-up and shutdown. The OMAC Base Class
defines a uniform name and type declaration and provides an error-logging interface. The OMAC
Base Class maintains a global directory service for name lookup and reference binding.

Control Law Components responsible for servo control loop calculations to reach specified setpoints.

Connection
Interface used to resolve component dependencies to other component, including interface references,
events-in and events-out.

Discrete Logic
Modules responsible for implementing discrete control logic or rules that can be characterized by a
Boolean function from input and internal state variables to output an internal state variables.

Finite State Machine Finite State Machine (FSM) is a component interface to handle state machine event processing logic

Human Machine Interface (or
HMI)

Modules responsible for human interaction with a controller including presenting data, handling
commands, and monitoring events. Defining a presentation style (e.g., GUI look and feel, or pendant
keyboard) is not part of OMAC API effort.

I/O Device
Modules responsible for managing communication between the physical hardware device and IO
software.

I/O Points
Components responsible for the reading of input devices and writing of output devices through a
generic read/write interface. Logically related IO are be clustered within an IODevice module or
under a Discrete Logic module.

Kinematics Model Component responsible for geometrical properties of motion.
Program Components that manage a series of linked Tasks, with ability to restart and navigate.

Task Coordinator
Modules are responsible for sequencing operations and coordinating the various motion, sensing, and
event-driven control processes. The task coordinator can be considered the highest level Finite State
Machine in the controller.

Task
Component interface that derives from a FSM and adds functionality in support of the Task life cycle,
including methods for starting, stopping, restarting, halting, and resuming a Task.

Task Generator Modules responsible for translating application programs into Tasks.

Since an open-architecture standard must allow system integrators to mix and match components from different vendors, one
of the greatest challenges is standardizing behavior in a non-restrictive manner to accommodate component packaging and
component integration. Control component packaging requires behavior to be dependable, well-defined, and well-understood
among a variety of users to help ensure the reusability of the component, the reliability of the component, and the correctness
of the system built using the component. Integration of control components requires that the behavior model is consistent not
just within a single component, but across all components in a system so that the components interoperate correctly. At the
same time, the component behavioral model must be reasonably flexible to accommodate all behavioral situations and not be
restrictive to a single programming methodology. Further, not all the behavior in the system may be pre-packaged as part of
a component, so that the components must be extensible.

This paper will review the behavior and programming requirements of machine controller components and review how the
OMAC API effort addressed these requirements. First, the paper will examine the control logic requirements needed in
machine control. The paper will describe the Finite State Machine as the basis of a behavior model of machine controller and
then show how it was generalized to handle a wide range of control logic needs. Next, the paper will review the use of
OMAC API Task abstraction and how it is used for programming controller components as well as handling process plans.
Throughout the paper examples will illustrate the application of the behavioral model as it relates to the efforts of the Open,
Modular, Architecture Controller (OMAC) User’s Group Application Programming Interface (API) workgroup’s effort to
specify API for standardized, interchangeable machine controller components.

2. PROGRAMMABLE COMPONENT MODEL

In machine automation, the control logic specifies the actions a machine controller can perform, that in turn define the
controller behavior. In specifying the potential actions, the control logic provides the means by which certain actions are
taken in response to different situations. Control logic is usually encoded as conditional instructions that specify alternative
routes through a program, depending on conditions as evaluated at execution time. It is the control logic that gives controllers
the semblance of intelligence. The more encompassing the control logic, the more “intelligent” the controller appears. The
problem domain of which we are interested includes sensor-based controllers, typical of CNC machines or robots, as applied
to manufacturing applications. In this realm, sensor feedback control systems fall under the domain of hybrid systems, in
which digital and analogue devices and sensors interact over time. Issues of purely control system modeling concern include,
but are not limited to, representation of states, uncertainty of state transitions, and the relationship to controllability in
general.

Modeling the control logic of machine controllers is a well-studied problem. A survey of the literature finds numerous
modeling approaches used in machine control logic programming, including State Machines, Hierarchical State Machines,
Discrete Event Dynamic Systems (DEDS), Hybrid Systems modeling, Probabilistic Automata, and Petri nets and
derivatives.8,9,10 From a component-based perspective, these control logic models can be categorized as state-based and can
be generalized as state machine models. By state-based we mean there is a dependence on their history. In contrast, stateless
means there is no state history (or memory) as typified by a cosine function, which for example, always returns the same
cosine independent of previous invocations. From a programming standpoint, control logic is predicated on the fact that
controller behavior must operate safely in an unpredictable environment where components or communications can fail at
random. For components to properly use other components, a standard model of control logic behavior must exist. For the
OMAC API, behavior is event-driven and the model abstraction is based on finite state machines (FSM). The OMAC API
defines interface event methods to specify the service available to component clients, while hiding the internal event-handling
and control logic implementation. Thus, the OMAC API FSM behavioral model is general enough to allow any state based
control logic model to be used in the component implementation, which includes most control logic models.

Formal modeling of control logic is only a part of the software life cycle. The OMAC API has defined a formal integration
process to establish the relationships between components for multiple aspects of the system life cycle. Historically, the
difficulty in component integration has been a significant barrier to realizing code reuse on a large scale. With the difficulty
encountered in integration, each new system often becomes as much a new invention as if it had been created from scratch.
The OMAC API has tried to address this problem by defining a controller integration framework in order for components to
understand how to collaborate, how to advertise functionality, where and under what framework they operate. The OMAC

API workgroup has spent considerable effort in defining an API to facilitate component integration in a controller
environment.

As the basis, the OMAC module API describes services for component integration and deployment in a consistent manner.
Using the Unified Modeling Language (UML) notation7, Figure 1 illustrates the high-level OMAC API component model,
that implements the IOmac and IConnection interfaces.

IConnection

Attributes

Requires
Events-In
Events-Out

Component FSM

IOmac
Functionality Functionality interface - defines the control capability of a component. This

interface includes methods for behavior, state, and parameter manipulation.

IOmac interface - provides infrastructure support for the broader application
framework. The Infrastructure interface handles component identification and
registration, which is used for the component to advertise what it does, where it
is, and how it operates.

IConnection interface - advertises the module dependencies such as the
interfaces it Requires and enumerating the Events-in and Events-out it supports,
thereby answering the question of what a module needs.

Attributes - parameterizes the features of a component that can be customized.

Figure 1. OMAC Deployable Component Model

An OMAC API component has a set of features, which applications can exploit in building control applications. These
features include composition (Functionality and Connections); loose coupling using events (for publishing events-out, for
emitting event via connection points, and consuming events-in); and configuration (through parametric attributes). These
interfaces provides a uniform API for dealing with the common controller behavior, such as handling normal operation,
installation, creation and destruction, parameter configuration, initialization, startup and shutdown, licensing, security and
registration, persistent data saving and restoring, enabling and disabling, binding and discovery, and naming.

Implementing behavior as packaged components introduces programmability constraints, including reusabilty, extensibility,
and flexibility. The OMAC API allows programmable control logic through the concept of a Task. Tasks like all OMAC
components and modules adhere to a Finite State Machine (FSM) behavior model. In this case, programmed behavior is
defined by the ITask interface corresponding to start-running-completed-restart program behavior. Tasks can also be used as
components in order to customize the system for specific application needs. However, Task are components that implement
the ITask interface, as opposed to the IOmac interface which defines a more complete component lifecycle API.

Axis Homing is an example of a component where control logic functionality should be encapsulated into a Task component
since homing can vary greatly depending on the underlying hardware. Figure 2 uses Unified Modeling Language (UML)
notation to illustrate how the OMAC task model is used to handle multiple Axis Homing configurations. To handle these
different hardware limit switch configurations and position capture, the Axis Homing is a component that aggregates an
IConnection interface in support of design and runtime connection to IO Points it needs in performing the homing process.
As part of this procedure, the hardware setup for the Axis Homing component is either hard-coded or configured. Then the
Axis Homing component advertises the names and types of IO it requires, including homing or limit switches, latches,
encoder pulse count, and possibly even an operator IO point. Then, the Axis Homing component is connected to these
IOPoints and to the controlling axis supervisor.

ITask

Axis
Homing

Homing
Switch

IOPoint

Encoder
Latch

IOPoint

IODevice

<<creates>> <<creates>>

Hardware

<<IConnection>>

ITask

Axis
Homing

Limit
Switch

IOPoint

IODevice

<<creates>>

Hardware

Operator
IO Point

IOPoint

<<IConnection>>

Axis

IAxis

Rel
Position
Servoing

(b) Manual adjusting: the operator jogs the axis to
the start side of the switch, then presses the
home button on the control panel. The axis
moves in the fixed direction to the home switch. If
the axis starts on the wrong side, the axis will
move away from the switch and eventually hit an

overtravel limit or hard stop.

(a) Home switch with encoder count
register to capture the home position
upon the tripping of the home switch.

Figure 2. Axis Homing Task Examples

Tasks that support both the IConnection and the ITask interfaces are Resident Tasks that operate as a permanent part of the
controller. Resident tasks execute periodically while active or on an event-driven basis. Resident Tasks depend on a
scheduler or an arrival of an event to carry out execution. ESTOP is an example of Resident Task since it maps an ESTOP event
from an IO Push Button into several events that can be tailored to accommodate domain-specific safety codes. For example,
ESTOP could be mapped into "stop as fast on each limit using the software limits as configured by OEM, put brakes on, cut
power", or "cut power after certain time limit" depending on pertinent safety codes. To allow for the different domain-
specific forms of ESTOP, this functionality can be abstracted into a Resident Task and programmed as either a hard or
abnormal stop to achieve a safe emergency stop.

3. PROGRAMMABLE PROCESS BEHAVIOR
We have established that the behavior of an OMAC modules and components are based upon FSM, but the relationship of a
module and FSM can vary. Modules can categorized as either Event-driven or Task-driven modules. Event-driven modules
exclusively accept events as the means to determine and alter behavior, but can offer component plugs to customize behavior.
Task-driven modules accept new and different Tasks, while still using event-service to sequence these Tasks.

3.1 Pluggable Event Handlers
Event-driven modules are restricted to only accepting events to alter behavior. Event-driven module examples include
modules consisting of one Resident Task (e.g., IEC61131-3 Program to handle Tool Changes) or the Axis module, which
only uses events to change control strategies. In the case of the Axis module, a client, such as an Axis Group, can switch
between motion control strategies (e.g., follow position, stop, follow velocity, home, etc.) by sending events that adhere to
the Axis module FSM. The Axis module FSM implementation itself is hidden, and the Axis interface only provides methods

for FSM event propagation and state query. There is no changing or modifying of the internal FSM for the module, but
customizing by using different event-handler plugs is possible.

The OMAC API has defined modules that accept event-handler “plugs” or predefined Resident Tasks that implement the
IConnection and the ITask interfaces as described previously. Plugs allow module customization in the OMAC API through
the selection of different component Resident Task implementations. Figure 3 labeled “Axis Module and Component Plugs”
shows the plugs defined for the Axis module. Plugs are customized to meet specific controller requirements. For different
applications, designers select different plugs to be used at system integration. Earlier we showed how different Axis Homing
Resident Task could be implemented, and now these can be used as alternative plugs in the Axis module at system
integration. To perform homing, the Axis Module would receive a startHoming event that the Axis module FSM would
process, which would then trigger the execution of the Homing task plug. As another example, consider the Command
Output plug. This plug could be developed to communicate with a SERCOS network or to communicate with CAN bus
depending on the application needs. This pluggable deployment does not place any extra programming burden on the end-
users. Control vendors would provide a set of default plugs, so that users would customize only if the need arises. Reusability
is provided by deploying the same plug in different controllers.

Disable
Component

Enable
Component

Reset
Component

Homing
Component

Jogging
Component

Servo
Positioning
Component

Control
Law

Component

System
Parameters
Component

Incrementing
Component

Move To
Component

Command
Output

Component

Sensed
State

Component

Servo
Velocity

Component

Control
Law

Component

Servo
Torque

Component

Control
Law

Component

Axis
Module

Finite State Machine

Command
Input

Component

Figure 3. Example use of Component Plugs in the Axis Module

3.2 Task-Driven Modules
Task-Driven modules are also event-driven, but change behavior by accepting new Tasks to be used within the module as a
behavioral FSM at runtime. For example, an Axis Group module can have a separate “Transient” Task for StraightLine
motion, and another Task for Arc motion. The Axis Group module need not be preprogrammed to understand that it supports
both Straight Line and Arc Tasks. This contrasts to the Event-driven module, which restricts Tasks to be “pre-installed” as
plugs at system integration time. Further, OMAC Task-Driven modules allow nesting of FSM, so that a full range of behavior
is possible. In the case of nested Task FSM, the OMAC Task-Driven modules are responsible for activating the master Task
FSM, which then coordinates its nested or subordinate FSM. The master Task can activate and coordinate its nested tasks
within a single program, on a single platform or across a distributed multi-platform controller. Thus, Task-Driven modules

provide a uniform model for the extensibility and programmability of control logic in a vendor-neutral, tool-neutral,
controller-neutral manner.

Part of the role Task-driven module is to provide a programming generalization satisfying most models. In machine control,
the process plan customarily serves as the programming model for manufacturing part production. A process plan coordinates
actions in a production operation to control one or more devices (i.e., machines, tools, fixtures, etc.) and allows "re-
programming" a controller. A RS274 part program is an example of a process plan for milling a part. Process plans are
handled in the OMAC API by translating them into a series of process-oriented Transient Tasks. In the OMAC API model,
each process plan step is translated into a sequence of Execution Steps as defined by the IExecutionStep interface, which is a
specialization of the ITask interface. The relationship between Transient Tasks and Execution Steps corresponds to
distinction between a class factory and an instance of the class. In this case, each Execution Step is a parameterized clone of a
Transient Task that has been pre-wired to resolve connection dependencies to components, modules and other Tasks.
IProgram is an interface that has been defined to provide programming control (e.g., start, stop, single step, rewind) that is
made up a sequence of Execution Steps. Figure 4 gives the inheritance hierarchy of the Task model in UML notation.

updateFSM()

<<interface>>
IFSM

abort()
hold()
init()
reset()
restart()
resume()
run()

<<interface>>
ITask

previousStep()
nextStep()

<<interface>>
IExecutionStep

singleStep()
endOfProgram
rewind()
endofStepStop()

<<interface>>
IProgram

Figure 4. Task Inheritance Hierarchy

The OMAC API provides a model for translating Process Plans into Execution Steps in a device independent manner. All
potential process plan steps have a corresponding Execution Step. The Task Generator module uses a Transient Task
“factory” that is responsible for generating Execution Steps. A system integrator rewrites the Transient Task factory
depending on the equipment and facilities of the machine controller. Figure 5 illustrates the variety of elements that are
involved in the system integration reprogramming of a Transient Task for a Tool Change. The figure offers two perspectives
for handling a tool change cycle in a CNC Machining Center. The implementation of the Tool Change Transient Task
depends on the underlying hardware and devices associated with the Tool Changing operation. A Tool Change may include
orientating motion of the spindle. It may also include motion of the axes to a fixed tool-change position, as performed by the
Axis Group Transient Motion Tasks (e.g., StraightLine motion segments). For case (a) in the figure, a Machining Center has
a Tool Changer (with a Tool Magazine, Collet/Chuck, etc.) that requires a separate Tool Changer module to coordinate the
activity. For case (b) in the figure, a Machining Center is not equipped with a moving (e.g., chain-driven) tool magazine or
specialized tool-changing device so the Tool Change functionality would have to be realized as a Resident Task rather than a
component/module, because it is specialized to a particular machine configuration.

A Part Program Generator may produce a program with one or more Tool Change Transient Tasks, each with appropriate
parameterization (i.e., selected tool). During machining, the Transient Tool Change Task(s) run in the Task Coordinator and
use the programmed logic to sequence the motion (i.e., Axis Group Transient Motion Tasks) and discrete IO (i.e., Tool
Changer Module or Tool Change Discrete Logic Task) necessary to coordinate the tool change operation.

Transient Task

ToolChange
(ClassFactory)

IIOPoint

ITask

1..n

IConnections

AxisGroup
Transient

Motion
Tasks

ToolChange
(ClassFactory)

ITask

ChangeTool(tool)

Tool Changer
Module

IIOPoint

1..n

IOmac

Transient Task
Transient Task designed for
specific machine configurations
hide complex commands/
actions to manage the Tool
Change that depends on
underlying hardware. Rewriting
Transient Task localizes
changes, and facilitates reuse.

Part Program
Generator

Collet
(Task or Module)

IIOPoint

1..n

Tool Magazine
(Task or Module)

...

1..n1..n

(a) Case of a Machining Center that has a Tool Changer
with associated hardware, e.g., Tool Magazine, and
Collet/Chuck. The Tool Changer module provides a
ChangeTool method to provide a repeatable cycle for
such a particular machining center.

(b) Case of a Machining Center without any moving
(e.g., chain-driven) tool magazine, but instead Tools
are stored in a stationary rack. In this case a Discrete
Logic Task serves to move the CNC Axes under
servo-control to unload a tool in an empty nest on the
rack-magazine and to pick up the specified tool from
another nest.

<<invokes>>

AxisGroup
Transient

Motion
Tasks

1..n
1..n

System Dependent

Figure 5. Relationship of Tasks, Programs, and Modules

4. DISCUSSION

We have shown numerous aspects to standardizing runtime behavior for components, but the OMAC API also contains
provisions for embedding smarts in a component to be used at design time. Support for the OMAC IConnection interface
defines a framework for resolving object dependencies to be used at design time in a drag-and-drop Integrated Developer
Environment (IDE), such as Visual Basic, or other visual programming tool. Embedding design smarts also enables
component introspection that allows users to determine the attributes of the component and to then customize the component.
With introspection, users could graphically drag and drop components onto a component container (possibly a form or an
Axis module container), and customize the properties of the components. The OMAC API workgroup foresees the ability of
IDE builder tools to query an OMAC component for the functional properties, the types of components it requires, and the
events-in it requires and the events-out it generates. To that ends, the controller integration process can be greatly simplified

through IDE configuration tools so that complete systems can be integrated graphically without any source code
programming required.

In the machine controller industry, there already exist controller IDE products11,12 that are make use of component-based
technology. Unfortunately, these products are not open, but proprietary and the resulting components are not interoperable
outside the vendor’s IDE. Without high-volume standardized component technology, it is economically unfeasible to create
and maintain components in IDE particular to the manufacturing automation industry13. The challenge for the OMAC API is
to be adaptable to these existing products in establishing controller component API standards, of which we are currently
investigating. In the long term, the OMAC API component connection and dependency model may help with the automation
of the integration process entirely so that instead of an IDE, systems are built from a formal requirements process.

Overall, the OMAC API technology vision provides for “easily customized plug-and-play control components to reduce cost
and provide higher fidelity while leveraging pervasive, off-the-shelf, high-volume, software technology.” To that ends, the
OMAC API specification provides many provisions to standardize component behavior in a plug and play environment in a
non-restrictive approach. These provisions include:

� Integration framework with a behavior model that is consistent not just within a single component, but across all

components in a system so that the components interoperate
� Behavioral model in support of task programming allowing extensible and flexible components
� Vendor-neutral, tool-neutral, controller-neutral behavior model to allow the export/import of all types of control

logic
� Component smarts to support multiple life cycle phases to customize the behavior of the component in IDE.

5. REFERENCES

1. F. Proctor, and J. Albus, “Open Architecture Controllers,” IEEE Spectrum, 34(6), pp. 60-64, 1997.
2. P. K. Wright, and I. Greenfeld, “Open Architecture Manufacturing: the Impact of Open-System Computers on Self-

Sustaining Machinery and the Machine Tool Industry,” Proc. Manufacturing International 90, ASME Vol. 2, pp. 41-47,
March 1990.

3. Chrysler, Ford Motor Co., and General Motors, “Requirements of Open, Modular, Architecture Controllers for
Applications in the Automotive Industry,” White Paper, Version 1.1, Dec. 1997.

4. Open, Modular, Architecture Controls (OMAC) Users Group API Working Group,
http://www.isd.mel.nist.gov/info/omacapi/

5. OSACA, “Open System Architecture for Controls within Automation Systems,” http://www.osaca.org, 2000.
6. OSEC, “Open System Environment Consortium,” http://www.sml.co.jp/OSEC, 2000.
7. Rational, “Unified Modeling Language,” http://www.rational.com/uml, Rational Software Corporation, 2000.
8. Y. Brave and M. Heymann, “Control of Discrete Event Systems Modeled as Hierarchical State Machines,” Proc. of 30th

IEEE Conf. Decision and Control, pp. 1499-1504, December 1991.
9. P. J. Ramadge and W. M. Wonham, “Modular Feedback Logic for Discrete Event Systems,” SIAM Journal of Control

and Optimization, September 1987.
10. T. M. Sobh and R. Bajcsy, “Visual Observation of a Moving Agent, ” in Engineering Systems with Intelligence;

Concepts, Tools, and Applications, Kluwer Academic Publishers, 1991.
11. ControlShell, Real-Time Innovations, Inc., http://www.rti.com
12. LabVIEW, National Instruments, Inc., http://www.ni.com
13. S. Birla, J. Yen, J. Skeries, and D.Berger, “Control Systems Requirements for Global Commonization,” Control

Engineering Online Extra, http://www.manufacturing.net, January 1999.

